Orbital stability of standing waves for semilinear wave equations with indefinite energy
نویسندگان
چکیده
Article history: Received 25 October 2007 Available online 29 March 2008 Submitted by P.J. McKenna
منابع مشابه
Asymptotic stability of solitary waves in the Benney-Luke model of water waves
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic variational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملOn stability of standing waves of nonlinear Dirac equations
We consider the stability problem for standing waves of nonlinear Dirac models. Under a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same time orbital and asymptotic stability. We are not able to get the full result proved in [26] for the nonlinear Schrödinger equation, because of the strong indefiniteness of the energy.
متن کاملOn the Stability of Standing Waves of Klein-gordon Equations in a Semiclassical Regime
We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007